تخمین دبی اوج سیلاب و حجم رواناب رگبار با استفاده از شبکه عصبی- فازی تطبیقی (مطالعه موردی: حوزه آبخیز کسیلیان)

Authors

  • جانی زاده, سعید
  • وفاخواه, مهدی
Abstract:

     Prediction of flood peak discharge and runoff volume is one of the major challenges in the management of watersheds. The present study was carried out to estimate event flood peak discharge and runoff volume using artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) in Kasilian watershed, Iran. For this purpose, 15 rainfall characteristics were considered for 60 storms from 1975 to 2009. Statistical indices of mean square error (RMSE), coefficient of efficiency (CE) and the coefficient of determination (R2) were used to assess models performance. The results showed that flood peak discharge variable, ANFIS with RMSE=1.28m3s-1, CE=%82 and  R2=0.86 has better performance than ANN with RMSE=1.22m3s-1, CE=%82 and  R2=0.95 and for runoff volume variable, ANFIS with RMSE=2369.54 m3, CE=%99 and  R2=0.99 has better performance than ANN with RMSE=10282.82m3, CE=%98 and  R2=0.98. Also, the results of the sensitivity analysis indicated that the most sensitive factor is excess rainfall for runoff flood peak discharge and runoff volume estimation.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مدل‌سازی بارش- رواناب با استفاده از شبکه عصبی مصنوعی و شبکه فازی- عصبی تطبیقی در حوزه آبخیز کسیلیان

     Rainfall runoff modeling and prediction of river discharge is one of the important practices in flood control and management, hydraulic structure design and drought management. The present article aims to simulate daily streamflow in Kasilian watershed using an artificial neural network (ANN) and neuro-fuzzy inference system (ANFIS). The intelligent methods have the high potential for dete...

full text

تخمین ضریب رواناب رگبار با استفاده از سیستم استنباط فازی- عصبی تطبیقی (ANFIS) در حوزه آبخیز بار اریه نیشابور

The rainfall-runoff process and flooding are hydrological phenomena that are difficult to study due to the influence of different parameters. So far, different methods and models have been provided to analyze these phenomena. The purpose of this study is evaluation of adaptive neuro-fuzzy inference system (ANFIS) for storm runoff coefficient forecasting. To that end, Barariyeh watershed was cho...

full text

مدل سازی بارش- رواناب با استفاده از شبکه عصبی مصنوعی و شبکه فازی- عصبی تطبیقی در حوزه آبخیز کسیلیان

مدل­سازی فرآیند بارش - رواناب و پیش­بینی دبی رودخانه یک اقدام مهم در مدیریت و مهار سیلاب­ها، طراحی سازه­های آبی در حوزه­های آبخیز و مدیریت خشکسالی است. هدف این تحقیق شبیه­سازی جریان روزانه در حوزه آبخیز کسیلیان با استفاده از شبکه عصبی مصنوعی و شبکه عصبی- فازی تطبیقی است. روش­های هوشمند دارای قابلیت بالایی برای برقراری ارتباط بین داده­های ورودی و خروجی می­باشند. در این تحقیق از آمار بارش، تبخیر ...

full text

تخمین ضریب رواناب رگبار با استفاده از سیستم استنباط فازی- عصبی تطبیقی (anfis) در حوزه آبخیز بار اریه نیشابور

فرآیند بارش - رواناب و ایجاد سیلاب از پدیده های هیدرولوژیکی هستند که بررسی آنها به سبب تأثیرپذیری از پارامترهای مختلف، دشوار می باشد. تاکنون روش ها و الگو های مختلفی برای تحلیل این پدیده ها ارائه شده است. از این رو هدف این پژوهش ارزیابی شبکه عصبی-فازی تطبیقی در پیش بینی ضریب رواناب رگبار است. به این منظور حوزه آبخیز بار اریه نیشابور انتخاب و داده های مربوط به 33 واقعه در بین سال های آماری 1331 ...

full text

بازسازی دبی روزانه با استفاده از روش های شبکه عصبی و فازی- عصبی(مطالعه موردی: سرشاخه های حوزه آبخیز کارون)

برای برآورد دبی روزانه در مدل‏های هیدرولوژی نیاز به دبی‏های پیوسته در بازه زمانی روزانه هست. تعداد سال‏های آماری متفاوت، نواقص آماری و خطای اندازه‏گیری باعث ایجاد سری‏های زمانی با پایه زمانی غیرمشترک می‏گردد. بنابراین بازسازی داده‏های دبی روزانه از اهمیت ویژه‏ای برخوردار است. این تحقیق به‌منظور بازسازی دبی روزانه در یکی از سرشاخه‏های رودخانه کارون و در دو مرحله انجام گرفت. در هر دو مرحله تحقیق ...

full text

تعیین مشارکت زیرحوضه‌های آبخیز خرّم‌آباد در دبی اوج و حجم رواناب به‌منظور اولویّت‌بندی در کنترل سیلاب

یکی از مهم‌ترین اقدامات مورد نظر در پروژه‌های مدیریت سیلاب، بررسی میزان مشارکت زیرحوضه­های مختلف یک حوضۀ آبخیز در تعیین مؤلّفه­های مختلف سیلاب خروجی از حوضه است. با توجّه به نبود ایستگاه‌های هیدرومتری در محلّ خروجی تمام زیرحوضه­ها، تحقّق هدف یادشده نیازمند شبیه‌سازی فرایند بارش <st...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 15

pages  250- 258

publication date 2017-09

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023